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ABSTRACT

In this report we build an convolutional neural network that labels pictures of human faces with the displayed emotion. Using
data augmentation techniques to bolster our set of training images, we obtain a classifier that is able to obtain 80% accuracy on
a testing image set.

Introduction
In this project, we attempted to build a classifier that could differentiate between eight facial expressions - sadness, happiness,
surprise, anger, fear, contempt, disgust, and neutral - given a dataset of approximately 13,700 labelled images of faces.
Convolutional neural networks that are able to classify emotions with quite high accuracy already exist; our goal was not to
invent something new but instead to explore this area of machine learning which none of the members in this group had much
exposure to. Thus our primary objectives in this project were to gain intuition on working with convolutional neural networks
and learn to use TensorFlow.

The ability to interpret facial expressions seems like a very complex, particularly human behavior, something we would
expect to be very difficult for a computer. Thus we used a complex architecture, modeled after an existing emotion classifier, as
a starting point for our own convolutional neural network, and used the validation set accuracy to guide our modifications to the
architecture as we continued training and testing different network models.

Data
The source of the data was an open repository (available at github.com/muxspace/ f acial_expression) of labelled images of
faces and a legend (as a .csv file), created by Brain Lee Yung Rowe and his graduate students for the purpose of training
machine learning algorithms. Code to load the dataset and split it into training/validation/test sets was provided by Yoshitomo
Matsubara, a graduate student in Computer Science at UCI.

The dataset contains approximately 13,700 images of faces with each face labeled as sadness, happiness, surprise, anger,
fear, contempt, disgust, and neutral. To build our model, we split our data into training, testing, and validation sets. We set
aside about 10 percent of the images for the validation set. Most of the images are greyscale, with centered faces facing the
camera, and have a dimension of 350 by 350, but a non-negligible portion of the data have non-centered faces, faces in profile,
and/or non-standard image dimensions.

Table 1. Data broken down by emotion label

emotion number percentage
anger 252 1.84%

contempt 9 .066%
disgust 208 1.52%

fear 21 .15%
happiness 5696 41.61%

neutral 6868 50.17%
sadness 268 1.96%
surprise 368 2.69%

Data Exploration
Our labeled data was quite imbalanced with respect to the emotions represented. Of the images in our dataset, 12,594 images,
or 92.00%, were labeled either as "happiness" or "neutral"; in contrast, "fear" had only 21 images (0.15%), and a mere 9 images
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(0.066%) were of "contempt." This posed substantial challenges for training, as our training-validation-test split often left no
images of contempt, and very few for fear, to train on.

Fig 1 displays the "mean" image for each emotion from 1 training set which was randomly sampled from the whole data
using a 70-20-10 split. Difficulties arising from the imbalance of emotions are apparent: there were no "contempt" faces in this
training set, and the average of the "fear" faces contains considerable fragmentation / artifacts because there were so few in the
training set. The mean image for "disgust" suffers from a slightly different, but related problem: though there are 208 "disgust"
images in the full dataset, many of them were non-standard image dimensions and so were stretched during image import. They
were also often images of faces that were turned away from the camera, leading to similar fragmentation and image artifacts.

We might also anticipate some difficulties for the deep learning agent from the images here - for example, the differing
widths and orientations of the faces may pose to be "false features" that the agent will need to learn to ignore. We might also
expect markers of gender to confound classification. The average images seem to suggest that faces of males and females fall
disproportionately into one group or another: the average face for "anger," for example, seems distinctly male, whereas the
average face for "happiness" appears more female.

Figure 1. mean faces from 1 sampled training set, non-augmented data

Nevertheless, potential difficulties aside, it is possible to see some clear differences emerging between the average faces
for each emotion. "Sadness" appears to be characterized by furrowed eyebrows, "neutral" by a somewhat stiff, expressionless
face, "happiness" by a wide smile and bulging cheeks, "surprise" by a mouth agape and raised brows, and "anger" by someone
yelling. And despite the visual artifacts in "fear" and "disgust," we can still make out two fairly distinct flavors of grimace.

Data Processing
Preliminary experiments on the non-augmented dataset seemed to indicate poor performance in classifying faces of contempt
and fear. This is due to the relatively small percentages of faces with contempt and fear as indicated in Table 1. We implemented
some image processing and manipulation techniques in order to increase the number of faces with contempt and fear in the
dataset so that we can achieve better performance in these two categories.

For the 30 faces of contempt and fear in the dataset, we created an additional 11 images for each face, resulting in 360
images of fear and contempt in the augmented dataset. The 11 additional images are 11 different filters and manipulations
of the original face. In particular, we implemented these techniques on the original faces: sharpen, rotate -5 degrees, rotate
5 degrees, smooth, increased smooth, transpose, greyscale, blur, Gaussian blur with a radius of 4, increased brightness, and
increased contrast.
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Figure 2. mean faces from 1 sampled training set from augmented data

As we can see in the figure above, the mean faces from 1 sampled training set from the augmented data now has a mean
face of contempt due to our image processing and an increase in the number of images for that category. However, we do see a
less definitive face for fear and disgust this time around, but this may just be due to the training, testing, and validation split;
choosing another split that leads to a training set with more images of disgust and fear would probably give us a more structured
mean face for those two emotions. All in all, the mean faces seem to be what we would expect to see based on the respective
emotion.

Modeling

Performance Metric
We compared model performance using accuracy: defined as #correct

#total . This was chosen for quick model comparison when
testing multiple architectures.

Convolutional Neural Network Architecture

Convolution
16 Channels. 3x3 Filter
Pooling
Flattening
FC- 128 Nodes
FC- 8 Nodes (Classification)

Table 2. Final Convolutional Neural Network Architecture

We use the architecture outlined by Simonyan and Zisserman as a starting point.1. This architecture is supported by 11 layers: 8
convolution layers and 3 fully connected layers with a flattening layer between them. Each fully connected layer held 4096
nodes. The convolution layers begin with a 64 channel and increasing by a factor of 2 until the final convolution layer. We
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attempted to implement this exact architecture however, our dataset proved to be too small and imbalanced to train the number
of parameters required for this architecture. Instead we used a stripped back version of the previous architecture that is shown
in table 2.

We chose to train our model using categorical cross entropy as our loss function. We consider both kl-divergence as well as
categorical cross entropy but our chosen loss function resulted in higher testing accuracy.

Results

Table 3. Final classifier results: 80.10% Test Accuracy

Emotion N # Predicted True Positive False Positive
happiness 569 615 486 129

anger 25 1 0 1
sadness 26 15 7 8
neutral 686 703 578 125

fear 25 23 23 0
surprise 36 21 14 7
disgust 20 16 8 8

contempt 10 3 3 0

Our final classifier used the architecture described in the previous section and was trained for only 3 epochs, as the plot in

Figure 3 indicated that the neural network began overfitting after 3 epochs. Our test set accuracy rate was
correct
total

= 80.10%,
with fairly strong performance on most categories except for sadness, anger, and disgust (Table 3).

The network appears to have highest accuracy on the emotions that were most highly represented in the dataset (happiness
and neutral) and the emotions for which we augmented the data (fear and contempt). The classifier had low accuracy, however,
on emotions which were sparse in the data. Higher accuracy on the emotions which make up the vast majority of the dataset
would be expected; the reasons for higher accuracy on the augmented emotions, which make up such a small portion of the
data, is discussed below.

Figure 3. plot of validation and training accuracy against training epochs
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Discussion
One of the findings that surprised us the most was that, among the neural network architectures we tried (and could afford to try
given our resources), simpler architectures actually performed much better at this task than more complex ones. Though we
initially used a significantly more complex model (2 convolution layers with 128 filters, 2 pooling layers, 1 flattening, and 3
dense layers each with 1024 nodes), it performed quite poorly (validation accuracy < 1%) while also taking a very long time to
train. It appears we vastly overestimated the complexity and size of the neural network necessary for this classification task,
leading to extreme overfitting.

Scaling the architecture down heavily to the model displayed in Table 2 led to a classifier that, though far simpler and
smaller, performed much better (accuracy > 80%).

We also vastly overestimated the number of iterations/epochs required to reach a reasonable accuracy. Figure 3 clearly
indicates that the neural network begins overfitting quite early in the training iterations; in subsequent model training, we found
there to be negligible difference in accuracy between training for 30 epochs as opposed to just 3. It seems odd that the classifier
begins overfitting so quickly, and we are unsure what to make of this result; it does not seem like it can be wholly attributable to
the fact that we augmented the data, as these images represent such a small portion of the data as a whole.

Last, we attempted to make the most of the data that we were given, but supplementing the dataset with more (externally-
sourced) examples of fear and contempt, not to mention of anger, sadness, surprise, and disgust, would surely improve the
classifier’s accuracy. Gathering additional images would also stave off a major doubt about the use of data augmentation: while
it is apparently a common technique, we feel rather uneasy about using transformations of images in both the validation and
training set as it likely leads to the classifier being both trained and validated on what is essentially the same image. This is
likely why the "test" accuracy is so high on the disgust and fear images even though the number of training examples is so
small: the training/validation/test split was done on the augmented dataset (as opposed to only augmenting the training data). In
a future attempt at this type of classifier, we would like to extend the dataset in order to have a more equal representation of
images in the training set.

A different approach to this imbalance might be to implement some sort of weighted loss function. By up-weighting the
loss of "rarer" emotions, such as contempt and disgust in our dataset, we could encourage our classifier to classify more images
with those labels correctly, even at the slight expense of accuracy for other labels. Implementation of this type of loss function
affected the convergence of our weights and this idea was discarded in favor of data augmentation. It is of interest for future
work to investigate these weighted loss functions and their ability to improve model accuracy.
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